## Resilience NEET, IIT-JEE

## Physics By Er. SARVESH YADAV

MOB-8887579768

## **SUBJECT-PHYSICS Straight Line of Motion (DPP-4)**

2. A car covers 1/3 part of total distance with a speed of 20 kmh<sup>-1</sup> and second 1/3 part with a speed of 30kmh<sup>-1</sup>

3. A particle is moving, such that its position coordinates (x, y) are (2m, 3m) at time t=0, (6m, 7m) at time t=2s

4. Two particles A and B are moving in xy-plane. Their positions vary with time t according to relation  $x_A(t)=3t$ .

b)  $\frac{7}{3}(\hat{\imath}+\hat{\jmath})$  c)  $2(\hat{\imath}+\hat{\jmath})$  d)  $\frac{11}{5}(\hat{\imath}+\hat{\jmath})$ 

c)  $\frac{\pi}{\sqrt{2}}$ 

c) 45 km/h

d)  $\frac{\sqrt{2}}{\pi}$ 

d) 37.3 km/h

1. A body along one quarter of a circle, the ration of distance to displacement is

and the last 1/3 part with a speed of 60 kmh<sup>-1</sup> the average speed of the car is

b) 30 km/h

b)  $\frac{2\sqrt{2}}{\pi}$ 

## **Objective questions:-**

a) 55 km/h

and (13m, 14m) at time t = 5 s.

a)  $\frac{1}{5}(13\hat{\imath} + 14\hat{\jmath})$ 

Average velocity vector  $(v_{av})$  from t=0 tot=5 s is

a)  $\frac{\pi}{2\sqrt{2}}$ 

|    | $x_B(t)=-6$ and $y_A(t)=t$ . $y_B(t)=2+3t^2$ . The distance between these particles at $t=1$ s is                                                                                                                                                                                                                       |                |                          |                                         |                |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|-----------------------------------------|----------------|
|    | a) 5 m                                                                                                                                                                                                                                                                                                                  | b) 3 m         | c) 4 m                   | d) $\sqrt{12 m}$                        |                |
| 5. | 5. A runner completes one round of a circular path of radius r in 40 s. His displacement after 2 min 20 s will be                                                                                                                                                                                                       |                |                          |                                         | n 20 s will be |
|    | a) Zero                                                                                                                                                                                                                                                                                                                 | b) 2π <i>r</i> | c) 2 <i>r</i>            | d) 7πr                                  |                |
| 6. | A motor car is going change in velocity of                                                                                                                                                                                                                                                                              | •              | f 50 km/h, it makes a 90 | <sup>0</sup> left turn without changing | the speed. The |
| 7. | a) $50 \text{km/h}$ b) $50 \sqrt{2}$ km towards south –west c) $70 \text{km/h}$ towards north-west d) None of these A particle moves on a straight line. The product of its acceleration and velocity is constant. The distance moved by the particle in time t is proportional to a) t b) $\sqrt{t}$ c) $t3/2$ d) $t2$ |                |                          | e distance                              |                |

|                                                                                                                                                                                                                   | a) 56 s                                      | b) 68 s                                                         | c) 80 s                       | d) 92 s                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|-------------------------------|--------------------------------------------------|
| 9. A particle its motion is projected vertically upwards. It travels equal distance during 5th and 6th second Find of its motion. Find projection speed (Take, $g = 9.8 \text{ m/s}^2$ )                          |                                              |                                                                 |                               |                                                  |
|                                                                                                                                                                                                                   | a) 50 m/s                                    | b) 30 m/s                                                       | c) 49 m/s                     | d) 29.4 m/s                                      |
|                                                                                                                                                                                                                   | particle moves with consecutive 2 s interval |                                                                 | 6 s after starting from rest. | The distance travelled during the                |
|                                                                                                                                                                                                                   | a) 1:1:1                                     | b) 1:2:3                                                        | c) 1:3:5                      | d) 1:5:9                                         |
| 11. A particle is moving in a straight line with initial velocity u and uniform acceleration a . if the sum of the distances travelled in t th and (t+1) th s is 100 cm, then its velocity after t s (in cm/s) is |                                              |                                                                 |                               |                                                  |
|                                                                                                                                                                                                                   | a) 20                                        | b) 30                                                           | c) 50                         | d) 80                                            |
| 12. A ball is thrown upwards from the ground. It crosses a point at the height of 25 m twice at an interval of 4 s. The ball was thrown with the velocity of                                                      |                                              |                                                                 |                               |                                                  |
|                                                                                                                                                                                                                   | a) 20 m/s                                    | b) 25 m/s                                                       | c) 30 m/s                     | d) 35 m/s                                        |
| 13. A particle is projected vertically upward with initial velocity 25m/s for its motion during third second, which of the following statement is correct?                                                        |                                              |                                                                 |                               |                                                  |
| <ul> <li>a) Displacement of the particle is 10 m.</li> <li>b) Distance covered by the particle is 10 m.</li> <li>c) Distance covered by the particle is 2.5 m.</li> <li>d) None of these</li> </ul>               |                                              |                                                                 |                               |                                                  |
| 14. A stone thrown upwards with speed u attains maximum height h. another stone thrown upwards from the same point with speed 2u attains maximum height H. what is the relation between h and H?                  |                                              |                                                                 |                               |                                                  |
|                                                                                                                                                                                                                   | a) 2h=H                                      | b) 3h=H                                                         | c) 4h=H                       | d) 5h=H                                          |
| 15.                                                                                                                                                                                                               | A body starting fody is                      | rom rest covers a distan                                        | ce of 9 m in the fifth second | . The constant acceleration of the               |
|                                                                                                                                                                                                                   | a) $2 \text{ m/s}^2$                         | b) $0.2 \text{ m/s}^2$                                          | c) $1.8 \text{ m/s}^2$        | d) $4 \text{ m/s}^2$                             |
|                                                                                                                                                                                                                   |                                              | all be projected verticall $6^{th}$ second? (take $g = 10^{th}$ |                               | red by it in 5 <sup>th</sup> second is twice the |
|                                                                                                                                                                                                                   | a) 58.8 m/s                                  | b) 49 m/s                                                       | c) 65 m/s                     | d) 19.6 m/s                                      |
|                                                                                                                                                                                                                   | body falling from hei<br>eight is            | ight h takes t <sub>1</sub> time to rea                         | ach the ground. The time tak  | en to cover the first half of the                |

8.A 150 m long train is moving with a uniform velocity of 45 km/h. The time taken by the train cross a bridge of

length 850 m is

| a) $t_2 = t_1 / \sqrt{2}$                                                                                                                                                               | b) $t_1 = t_2$                 | $/\sqrt{2}$ c) $t_2 = \sqrt{3}$    | $\frac{1}{3}t_1$ d) $t_1 = \sqrt{3}t_2$ |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|-----------------------------------------|--|--|
| 18. One particle is dropped while another particle is thrown downwards with initial velocity of 2 m/s, simultaneously. Both these particles are at a separation of 18 m after time t is |                                |                                    |                                         |  |  |
| a) 4.5 s                                                                                                                                                                                | b) 9 s                         | c) 9.8 s                           | d) 18 s                                 |  |  |
| 19.A body is dropped und                                                                                                                                                                | er gravity. The ratio of dista | ance covered by the body in 1st ar | nd 6 <sup>th</sup> second of motion is  |  |  |
| a) 1:11                                                                                                                                                                                 | b) 1:6                         | c) 1:5                             | d) 5:12                                 |  |  |
| 20.A body moving with a uniform acceleration crosses a distance of 65 m in the 5 <sup>th</sup> second and 105 m in 9 <sup>th</sup> second. How for will it go in 20 s?                  |                                |                                    |                                         |  |  |
| a) 2040 m                                                                                                                                                                               | b) 240m                        | c) 2400 m                          | d) 2004 m                               |  |  |
| 21.A window is 50 cm long. A stone is falling from a height of 40 cm above the window. It crosses the window                                                                            |                                |                                    |                                         |  |  |
| a) $\frac{3}{7}$ s                                                                                                                                                                      | b) $\frac{2}{7}$ s             | c) $\frac{1}{7}$ s                 | d) $\frac{4}{7}$ s                      |  |  |
| 22.If a ball is thrown ver                                                                                                                                                              | rtically upward with spee      | d u, the distance covered durin    | g the last t second of its              |  |  |

ascent is

a) 
$$\frac{1}{2}$$
 gt<sup>2</sup> b) ut- $\frac{1}{2}$  gt<sup>2</sup> c) (u-gt)t d) ut

23. Assertion: Time to reach maximum height is same as time to fall for a ball thrown in air. **Reason:** Motion in gravitational field with air resistance is asymmetrical.

- b) Both A and R are correct and R does not explains A a) Both A and R are correct and R explains A. c) A is correct R is incorrect. (d) A is incorrect R is correct.
- 24. For a moving bus, if its displacement-time relation is given as s-t-27t +4. Then, find its acceleration when its velocity is zero

a) 
$$15 \text{ m/s}^2$$
 b)  $18 \text{ m/s}^2$  c)  $20 \text{ m/s}^2$  d)  $24 \text{ m/s}^2$ 

25. The acceleration of a particle starting from rest varies with time according to relation a-at+ The velocity of the particle after a time t will be

a) 
$$\frac{\alpha t^2}{2} + \beta$$
 b)  $\frac{\alpha t^2}{2} + \beta t$  c)  $\alpha t^2 + \frac{1}{2}\beta t$  d)  $\frac{(\alpha t^2 + \beta)}{2}$ 

26. For motion of an object along the x- axis, the velocity v depends on the displacement x as  $y = 3x^2 - 2x$ , then what is the acceleration at x = 2m?

c)  $18 \text{ m/s}^2$ 

d)  $10 \text{ m/s}^2$ 

b)  $80 \text{ m/s}^2$ 

a)  $48 \text{ m/s}^2$ 

27. The displacement of a particle moving along x axis depends on time as  $\sqrt{x}$ =t +1. Velocity of particle

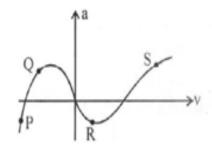
a) Increases with time

b) decreases with time

c) is independent of time

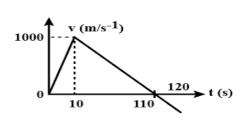
c) None of these

28. The coordinates of a particle moving in xy- plane vary time as  $x=4t^2$ , y=2t the path of the particle is


- a) a straight line
- b) a circle
- c) a parabola
- d) an ellipse

29. Stating from rest, acceleration of a particle is a =2(t-1). The velocity of the particle at t=5 s is

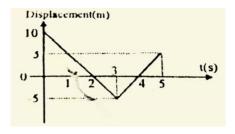
- a) 15 m/s
- b) 25 m/s
- c) 5 m/s


d) 0

30. Acceleration – velocity graph of a moving particle s shown in figure . the particle is



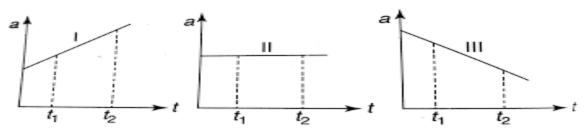
- a) Speeding up at P
- b) speeding up at Q
- c) speeding down at S
- d) speeding up at R


31. The graph shows the variation of velocity of a rocket with time. Then the maximum height attained by the rocket is

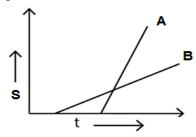


- a) 1.1 km
- b) 5 km

- c) 55 km
- d) none of these


32. The diagram shows the displacement-time graph for a particle moving n a straight line. The distance covered by the particle in the time interval t = 0 to t = 5 s is




- a) 12.5 m
- b) 17.5 m
- c) 22.5 m

d) 25.5 m

33. Each of the three graphs represents acceleration versus time for an object that already has a positive velocity at time  $t_1$ . Which graphs show an object whose speed is increasing for the entire time interval between  $t_1$  and  $t_2$ ?



- a) Graph I only
- b) Graphs I and II only
- c) Graphs I and III only
- d) Graphs I, II and III only
- 34. Figure shows two displacement –time graphs of A and B. the relative velocity of particles



- a) is zero
- b) is (non zero) constant
- c) continuously increases
- b) continuously decreases
- 35. A boy can swim in still water at I m/s. He swims across a river flowing at 0.6 m/s which is 336 m wide. If he travels in shortest possible time. Then what time he takes to cross the river?
  - a) 250 s

b) 420 s

c) 340 s

- d) 336 s
- 36. Car A moves due north at a speed of 40 km/h. while another car B moves due east at a speed of 30 km/h. Find velocity of car B relatives to car A (both in magnitude and direction).
  - a) 40 km/h/ at an angle  $\tan^{-1}(\frac{3}{5})$  south of east
  - b) 50 km/h/ at an angle  $\tan^{-1}(\frac{3}{5})$  south of east
  - c) 40 km/h/ at an angle  $\tan^{-1}(\frac{3}{4})$  south of east
  - d) 50 km/h/ at an angle  $\tan^{-1}(\frac{3}{4})$  south of east
- 37. The ratio of the distances travelled by a freely falling body in the  $1^{st}$ ,  $2^{nd}$ ,  $3^{rd}$  and  $4^{th}$  second
  - a) 1: 4:9:16
- b) 1: 3:5:7
- c) 1:1:1:1
- d) 1:2:3:4

- b)
- 38. A car starts from rest and accelerates at 5 m/s<sup>2</sup>. At t = 4 s, a ball is dropped out of a window by a person sitting in the car. What is the velocity and acceleration of the ball at t = 6 s? ( Take g = 10 m/s<sup>2</sup>)
  - a)  $20 \text{ m/s}, 5 \text{ m/s}^2$
- b) 20 m/s, 0
- c)  $20 \sqrt{2} \text{ m/s}, 0$
- d)  $20\sqrt{2}$  m/s, 10 m/s<sup>2</sup>

| a) $\frac{t1+t2}{2}$                       | b) $\frac{t1t2}{t1-t2}$                                          | $c)\frac{t1t2}{t2+t1}$                                              | d) $t_1 - t_2$                                                  |
|--------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|
| 40. If the velocity of a between 1 s and 2 |                                                                  | re A and B are constants, the                                       | nen the distance travelled by it                                |
| a) 3A +7B                                  | b) $\frac{3}{2}A + \frac{7}{3}B$                                 | C) $\frac{A}{2} + \frac{B}{3}$                                      | d) $\frac{3}{2}$ A +4B3                                         |
|                                            | tart from a point at the same $K_Q(t) = ft - t^2$ . At what time | _                                                                   | heir positions are represented by $X_p$ velocity?               |
| a) $\frac{a-f}{1+b}$                       | b) $\frac{a+f}{2(b-1)}$                                          | c) $\frac{a+f}{2(1+b)}$                                             | d) $\frac{f-a}{2(1+b)}$                                         |
|                                            | article along a straight is line on of the particle, when its ve |                                                                     | $= 8+12t-t^3$ where, x is in metre and t                        |
| a) 24 ms <sup>-2</sup>                     | b) zero                                                          | c) 6 ms <sup>-2</sup>                                               | d) 12 ms <sup>-2</sup>                                          |
| 43. A body standing a which it hits the gr |                                                                  | neight drops a stone. Assum                                         | ing, $g = 10 \text{ ms}^{-2}$ , the velocity with               |
| a) 20 m/s                                  | b) 40 m/s                                                        | c) 5 m/s                                                            | d) 10 m/s                                                       |
| **                                         | From a high rise platform at the same platform with a spee       | · ·                                                                 | r 6 s, another ball is thrown = 48 s. what is the value of v? ( |
| a) 74 ms <sup>-2</sup>                     | b) 55 ms <sup>-2</sup>                                           | c) 40 ms <sup>-2</sup>                                              | d) 60 ms <sup>-2</sup>                                          |
|                                            |                                                                  |                                                                     |                                                                 |
|                                            |                                                                  |                                                                     |                                                                 |
|                                            |                                                                  |                                                                     |                                                                 |
|                                            |                                                                  |                                                                     |                                                                 |
|                                            |                                                                  |                                                                     |                                                                 |
| Web-WWW.Resilienceneetii                   |                                                                  | <b>H YADAV (For –NEET &amp; IIT</b> -<br>tap Bhawan, Hazratganj, Lu | JEE)<br>cknow - Mobile No. 8887579768                           |

39. Preeti reached the metro station and found that the escalator was not working . she walked up the stationary escalator in time t<sub>1</sub>. on other days if she remains stationary on the moving escalator, then the escalator takes

her up in time t<sub>2</sub>. The time taken by her to walk up on the moving escalator will be